M1. (a) (i) short sight accept myopia
(ii) diverging
(b) light
(c) Marks awarded for this answer will be determined by the quality of communication as well as the standard of the scientific response. Examiners should also apply a 'best-fit' approach to the marking.

0 marks
No relevant content
Level 1 (1-2 marks)
There is a basic description of one advantage or disadvantage of using either of the methods

Level 2 (3-4 marks)
There is a description of some advantages and / or disadvantages of using both methods
or
a full, detailed description of the advantages and disadvantages of using either of the methods.

Level 3 (5-6 marks)
There is a clear description of the advantages and disadvantages of using both methods.
examples of the points made in the response
extra information
laser surgery
advantages:

- appearance
- permanent effect
- no glasses which need changing
disadvantages:
- risks associated with surgery
- large cost
- not able to drive etc straightaway
- (still) might need glasses for reading

wearing glasses

advantages:

- able to function straightaway
- any problems easy to sort out
disadvantages:
- easily broken
- easily lost
- need changing
- overall cost might be greater if several changes in vision
- might eventually need two pairs of glasses
(d) move lens
closer to film

M2.(a) (sound waves) which have a frequency higher than the upper limit of hearing for humans or
a (sound) wave (of frequency) above 20000 Hz
sound waves that cannot be heard is insufficient a wave of frequency 20000 Hz is insufficient
(b) 640
an answer of 1280 gains 2 marks
allow 2 marks for the correct substitution
ie 1600×0.40 provided no subsequent step $\frac{1600 \times 0.80}{2}$
provided no subsequent step
allow 1 mark for the substitution 1600×0.80 provided no subsequent step
allow 1 mark for the identification that time (boat to bed) is 0.4
(c) any one from:

- pre-natal scanning / imaging
- imaging of a named organ (that is not surrounded by bone), eg stomach, bladder, testicles
accept heart
do not allow brain or lungs (either of these negates a correct answer)
- Doppler scanning blood flow
(d) advantage
any one from:
- (images are) high quality or detailed or high resolution clearer / better image is sufficient
- (scan) produces a slice through the body
- image can be viewed from any direction
allow images are (always) 3D / 360
- an image can be made of any part (inside the body)
allow whole body can be scanned
- easier to diagnose or see a problem (on the image)
disadvantage
any one from:
- (the X-rays used or scans) are ionising allow a description of what ionising is
- mutate cells or cause mutations or increase chances of mutations
allow for cells:
DNA / genes / chromosomes / nucleus / tissue
- turn cells cancerous or produce abnormal growths or produce rapidly growing cells
- kill cells
damage cells is insufficient
- \quad shielding is needed
can be dangerous (to human health) unqualified, is insufficient

M3. (a) wavelength correctly shown
(b) (i) increased
decreased
(ii) 17-18 inclusive
evidence of measurement divided by 3 or mean of 3 separate measurements
mm
accept cm if consistent with answer
(c) (i) red shift
(ii) moving away
(iii) the furthest galaxies show the biggest red shift
(meaning that) the furthest galaxies are moving fastest
(so the) Universe is expanding
(extrapolating backwards this suggests that) the Universe started from an initial point
(iv) cosmic microwave background radiation allow CMBR

M4.Level 3 (5-6 marks):

A detailed and coherent plan covering all the major steps is provided. The steps in the method are logically ordered. The method would lead to the production of valid results.

A source of inaccuracy is provided.

Level 2 (3-4 marks):

The bulk of a method is described with mostly relevant detail. The method may not be in a completely logical sequence and may be missing some detail.

Level 1 (1-2 marks):

Simple statements are made. The response may lack a logical structure and would not lead to the production of valid results.

0 marks:
No relevant content.

Indicative content

place a glass block on a piece of paper
draw around the glass block and then remove from the paper
draw a line at 90° to one side of the block (the normal)
use a protractor to measure and then draw a line at an angle of 20° to the normal
replace the glass block
using a ray box and slit point the ray of light down the drawn line
mark the ray of light emerging from the block
remove the block and draw in the refracted ray
measure the angle of refraction with a protractor
repeat the procedure for a range of values of the angle of incidence

possible source of inaccuracy

the width of the light ray
which makes it difficult to judge where the centre of the ray is

M5.(a) Level 3 (5-6 marks):

A detailed and coherent plan covering all the major steps is provided. The steps in the method are logically ordered. The method would lead to the production of valid results.

A source of inaccuracy is provided

Level 2 (3-4 marks):

The bulk of a method is described with mostly relevant detail. The method may not be in a completely logical sequence and may be missing some detail.

Level 1 (1-2 marks):

Simple statements are made. The response may lack a logical structure and would not lead to the production of valid results.

0 marks:
No relevant content.
Indicative content
place a glass block on a piece of paper
draw around the glass block and then remove from the paper
draw a line at 90° to one side of the block (the normal)
use a protractor to measure and then draw a line at an angle of 20° to the normal replace the glass block
using a ray box and slit point the ray of light down the drawn line mark the ray of light emerging from the block remove the block and draw in the refracted ray measure the angle of refraction with a protractor repeat the procedure for a range of values of the angle of incidence
possible source of inaccuracy
the width of the light ray
which makes it difficult to judge where the centre of the ray is
(b) velocity / speed of the light decreases allow velocity / speed of the light changes

M6.(a) magnification $=\frac{\text { image height }}{\text { object height }}$
dividing by an object height of 1 cm gives the same (numerical) value
(b) accept anything practical that would work eg:
use a taller object
use a (travelling) microscope
attach a scale to the screen and use a magnifying glass
(c) both points plotted correctly
correct line of best fit drawn
a curve passing through all points (within $1 ⁄ 2$ square), judge by eye
(d) values of 1.4 and 0.6 extracted from the graph
2.33 times bigger
accept any number between 2.3 and 2.5 inclusive
(e) by dividing the distance between the lens and the image by the distance between the lens and the object
at least one correct calculation and comparison eg $100 \div 25=4$ which is the same as the measured magnification

